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ABSTRACT

A literature survey and analysis of the use of neural networks for the

classification of remotely sensed multispectral imagery is presented. As part

of a brief mathematical review, the backpropagation algorithm, which is the

most common method of training multi-layer networks, is discussed with an

emphasis on its application to pattern recognition. The analysis is divided

into five aspects of neural network classification: 1) input data preprocessing,

structure, and encoding, 2) output encoding and extraction of classes, 3)

network architecture, 4) training algorithms, and 5) comparisons to

conventional classifiers. The advantages of the neural network method over _.

traditional classifiers are its non-parametric nature, arbitrary decision

boundary capabilities, easy adaptation to different types of data and input

structures, fuzzy output values that can enhance classification, and good

generalization for use with multiple images. The disadvantages of the

method are slow training time, inconsistent results due to random initial

weights, and the requirement of obscure initialization values (e.g., learning

rate and hidden layer size). Possible techniques for ameliorating these

problems are discussed. It is concluded that, although the neural network

method has several unique capabilities, it will become a useful tool in remote

sensing only if it is made faster, more predictable, and easier to use.

INTRODUCTION

Researchers from many disciplines are interested in the use of -

remotely sensed data to enhance their research. The focus of this paper is the

use of this data to produce ground cover classifications. Standard

classification methods usually require assumptions about the underlying

statistics of the data, the most common being that the data for each ground

cover class is Gaussian distributed (e.g., Richards, 1986; Schowengerdt, 1983;

Swain, 1978). If these assumptions turn out to be correct then the statistical

classifier is the optimal choice for the problem. In recent years the artificial

neural network, or multi-layer perceptron, has been developed and applied to

general pattern recognition problems. Neural network classifiers are non-

parametric and may be more robust when distributions are strongly non-
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Gaussian (Lippmann, 1987). Because of this capability, researchers have

begun investigating the use of this method for classifying remotely sensed

multispectral imagery.

There are two stages involved in using neural networks for

multispectral image classification: the training stage and the classification -

stage. Training data is similar to that used in a statistical classifier. The

network is trained, typically by the backpropagation algorithm, until some

targeted minimal error is achieved between the desired and actual output

values of the network. Once training is complete, the network is used as a

feed-forward structure to produce a ground cover classification for the entire

image.

Since research on the use of neural networks for the classification of

multispectral imagery has just begun within the last four years, no

comprehensive study of this process has been presented. The goal of this

paper is to present a thorough analysis of the technique, discussing all

aspects of the process from selection of input data to final assignment of

classes, and to review work currently appearing in the literature. Particular

emphasis is given to both the unique problems and capabilities of the neural

network method as compared to standard classifiers. A general review of

neural networks is presented first. Following this is the analysis and

literature survey, organized according to topic. At the end, conclusions are

drawn about the capabilities, problems, and potential future use of neural

networks as a tool of remote sensing.

1. A REVIEW OF NEURAL NETWORKS

Network structure

The basic element of a neural network is the processing node (Figure 1).

Each processing node mimics the biological neuron and performs two

functions. First it sums the values of its inputs. This sum is then passed

through an arbitrary "activation" function to produce the node's output value.

The processing nodes are organized into layers, each generally fully

interconnected to the following layer. There are no interconnections within a

layer, however. In addition, there is an input layer that serves as a _.

distribution structure for the data being presented to the network. No
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The Processing Node

Node

Inputs
NET Activation

• _ Function Node Output

Figure 1: Internal structure of a neural network processing node.
Node inputs are summed and passed through an
activation function which is usually a sigmoid. The
value of the sum, NET, is referred to in the
discussion ofbackpropagation.
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processing is done at this layer. One or more actual processing layers follow

the input layer. The final processing layer is called the output layer. Any

layers in between the input and output layers are termed "hidden" layers.

Figure 2 shows the generic structure for a commonly used configuration, the

three layer neural network. The interconnections between each node have an

associated weight. When a value is passed down that interconnection, it is

multiplied by the weight. These weight values contain the distributed

knowledge of the network.

Backpropagation training algorithm

Until recently, there were no effective algorithms for adjusting the

interconnecting weight values for minimal overall training error in multi-

layer networks (Lippmann, 1987). The generalized delta rule, or

backpropagation, presented in 1986 by Rumelhart et al., is now one of the

most commonly used methods. This is an iterative, gradient descent training

procedure. The training data consists of a pair of data vectors. The input _.

data vector is the pattern to be learned and the desired output vector is the

set of output values that should be produced by the network upon recall of the

input training pattern. The goal of the training is to minimize the overall

error between the desired and actual outputs of the network.

Because of its widespread use we will provide a brief description of the

backpropagation algorithm. The following equations were adapted from Pao

(1989) and Rumelhart et al. (1986), and a full derivation can be found in

these sources. Refer to Figure 2 for notation. The error for one input

training pattern, t, is a function of the desired output vector, d, and the

actual output vector, o, given by

E= ½.E(dk--Ok) 2. (1)
k

The value produced by output node k, %, is the activation function, f,

evaluated at the sum produced within node k, NET k (Figure 1). NET k, in

turn, is a function of the weights between the hidden and output layer, wkj,

and the outputs of the hidden layer nodes, o j:

(2)

- k.-
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Three Layer Neural Network

Hidden Layer

Input Layer Output Layer

Input Output
Pattern, ti • ° Pattern, o k

i k

Wji Wkj

Figure 2: A generic three layer neural network structure showing weight values and

layer labels referred to in the discussion of the backpropagation algorithm.
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To minimize the error, the change from one iteration to the next in wkj must

be proportional to the derivative of the error with respect to the weights

summed over all training patterns. The new weights to be used in iteration--

(m + 1) can be expressed as a function of quantities from the current iteration

(m) as

P o_E(m)

Wkj(m+ 1) = wkj(m)-LR. _ o3wkj(m),
(3)

where LR, the learning rate, is the percentage of the step taken towards the

minimum error in each iteration. Substituting for O__E_E(see Pao, 1989;
_Wkj

Rumelhart et al., 1986), the weight change formula becomes

P

Wkj(m+l ) = Wkj(m)+LR._((dk-Ok).f'(NETk).Oj). (4)

To determine the weight change formula for any previous sets of weights,

such as wjl in Figure 2, the error must be propagated back from the output _.

layer. The error term at a hidden layer node is computed from the sum over

all variations in the output layer. This results in a more complex weight

change formula for weight wii,

w_(m+l) = w_(m)+LR, f'(NETj).2((dk-Ok).f'(NET_).Wkj).t i , (5)
k

where NETj is the internal sum of hidden layer node j. It can be seenthat

part of this equation is containe d in the previous weight change formula (eq.

4). This carry over of terms from one weight change equation to the next

represents the backpropagation of the error.

The equations are easily extended to the case of more than one hidden

layer. The update equation fo_, eacfi _set 0fweightS before Wkj is a ftmction of

quantities calculated for the previous set of weights. As each training

pattern is presented, the relevant quantities are summed at each processing

node. The total error between desired and actual outputs is also summed, rf

this error is still above some predetermined threshold when the training cycle

is completed, the weights are adjusted and training continues.
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Sigmoid activation function

Any differentiable function may be used for the activation function, f.

The most common is the sigmoid function (Figure 3), defined as

1

f(NET) = l+e -srr' (6)

where NET is the sum of weighted inputs to the processing node (Figure 1).

The shape of the sigmoid can be modified by multiplying NET by a constant

(Pao, 1989). However, the exact features of the curve are less important than

the general S-shape, and the overall network will function just as well with or

without this change (CaudiU, 1988). One key advantage of the sigmoid

function is that its derivative can be expressed in terms of the function itselfl

i.e.,

f'(NET) = f(NET).(1-f(NET)). (7)

Since the function has already been computed during forward propagation of

the training data, the computation time of backpropagation is reduced over

the general case.

Some features of the sigmoid activation function are important to

network performance. Zero and one values are possible only with inputs of

+_. To account for this, values of 0.1 and 0.9 are generally used to represent

the low and high values of binary numbers (Pao, 1989; Rumelhart et al.,

1986). The activation function has a nearly linear input/output relationship

in between these two extreme values. But as the outputs of a node approach

these values, the derivative of the activation function decreases to zero, thus

ensuring that only very small changes will occur in the weights (Caudill,

1988). The derivative has a maximum value when the output is 0.5. Since -_

the change in weights is proportional to the derivative value, the weights will

change rapidly in this case and help influence the node to commit to a high or

low value. This feature probably contributes to the stability of the learning

stage (Rumelhart et al., 1986).



8

Sigmoid Activation Function
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Figure 3: The sigmoid activation function.

NET is the weighted sum of the inputs to the processing node.
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Other neural network training considerations

Once the training algorithm and activation function have been

determined, the next issue is when to update the weights. The

backpropagation algorithm provides weight change terms that should be

summed for all training patterns to obtain a true gradient descent of the

overall training error. If weight corrections are carried out after each

training pattern presentation, the method is not a true gradient searching

procedure (Pao, 1989). Many neural network implementations, however,

employ this technique because the code for this method, sometimes called

"sequential" training, is simpler. It also allows for more flexibility with the

training data since all patterns do not have to be presented before weight

changes occur. However, besides the disadvantage of not obtaining a true

gradient descent, this method is hindered by additional processing time per _.

training cycle (which constitutes one presentation of each pattern) because

the weights are adjusted with every training pattern instead of only at the

end of the cycle. It is also less amenable to a parallel implementation. The

method of summing the changes for all training patterns and updating the

weight values at the end is referred to as "batch" or "epoch" training.

Training a neural network involves setting several initial parameters.

The first step is to determine the training data and corresponding desired

outputs for that training data. Then overall network structure must be

defined. The weight updating method (sequential or batch) must be chosen

for the training algorithm. When the training process begins, all of the

weights of the network must be set to random values, because it is not

possible to obtain a set of unequal weights containing the distributed

knowledge of the network if a set of equal weights is used for the initial

configuration (Rumelhart et al., 1986). Then the learning rate parameter

must be set, generally by trial and error. Adaptive learning rates are one _

way to avoid this trial and error process. One adaptive strategy is to adjust

the learning rate downward after some training interval if the overall

training error has increased and upward if the overall error has decreased. A

similar method has been employed by Heermann and Khazenie (1992). With

this method the initial value of the learning rate is not crucial to the success

of the training and training speed is increased since the learning rate is

adjusted to the highest value that does not cause instability.
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The final parameter is the training convergence criterion. Only in

simple cases is it possible to train the network to zero training error. Thus,

some criterion for terminating the training process must be established, such

as the mean square error falling below a specified threshold. When this

criterion is met the network training is complete and the network may be

used as a feed-forward classifier. The exact value of this threshold is another

parameter that must be determined experimentally. This is a problem of

generalization versus specialization: if the network is trained too well on the

training data it might not function accurately on the rest of the image; on the

other hand, if it is not trained well enough it will not be able to separate the

classes, even in the training data, to an acceptable extent. The choice of a

threshold also might be influenced by training time. A disadvantage of the

neural network method is the enormous length of time often required to

obtain the minimum training error. A higher threshold value can be used to

keep the network training time reasonable.

In addition to long training time, another drawback of neural networks

is that backpropagation, like all gradient descent algorithms, is not

guaranteed to find the global minimum error. During the training phase, the

network takes the steepest descent from the current position to one of lower

error (Caudill, 1988). If the network encounters a valley, or local minimum,

in the error space, it can become stuck and the error will not decrease to the

global minimum value. It is also possible for the system to oscillate betweeri

two points. One way to alleviate these problems is to add some fraction of the

weight change calculated in the previous iteration, a. Awkj (m), to the weight

update formula wkj(m+ l) (eq. 4) (Pao, 1989). The added push from this

previous weight change term hopefully is enough to keep the network from

becoming stuck in local minima during training. The momentum parameter,

a, like the learning rate, is set at the beginning of the training and must be

determined experimentally. It is possible to implement an adaptive

momentum term as well (Heermann and Khazenie, 1992).

Neural networks for pattern recognition

Neural networks have been applied to a wide range of problems,

including pattern recognition. Before discussing the particular case of

classification of multispectral imagery, it is helpful to examine the general
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pattern recognition capabilities of neural networks. During training, the

network weights are adjusted in an attempt to minimize the error between

desired and actual outputs for the training patterns 1. This results in the

formation of optimal decision boundaries in the feature space that determine

class membership. The advantage of the neural network method is that this

process is done with no assumptions about class distribution, hopefully

leading to a more general technique.

One way to view the operation of a neural network is to consider how

the feature space is partitioned for each output. Lippmann (1987) provides

an excellent discussion of the decision region capabilities of networks as a

function of the number of layers. His discussion focuses on a two class case

using multi-layer perceptrons with one output and discontinuous, hard

limiting (+1 for positive inputs and -1 for negative inputs) activation

functions. A two layer network (no hidden layer) can form hyperplane

decision regions in the feature space (Figure 4). A three layer network can

produce any, possibly unbounded, convex region 2 in the input data space.

The nodes in the hidden layer produce a series of hyperplane decision regions

as in the output layer of the two layer network. Each node of the output layer

then performs a logical AND operation on these hyperplanes to produce the

final convex decision regions for that output. With the addition of a second

hidden layer, any form of decision region can be created. The output layer in

this case takes the set of convex decision regions produced by the previous

layer and performs a logical OR operation, thus creating arbitrarily shaped

decision regions. The advantage of the four layer network is that it can form

regions that are disconnected. Since the four layer net can produce

arbitrarily complex decision regions there is no need for the use of any higher

order nets.

In order to be used for the classification ofmultispectral imagery, the

network must be able to discern multiple classes, not just separate two

classes as shown in Figure 4. Lippmann (1987) states that the behavior of _.

the required type of net (i.e., one with multiple outputs and the sigmoid

activation function) is similar to the single output, hard limiting activation

function case of Figure 4. The analysis of this net is more difficult, however,

1 Note that, as with the maximum-likelihood classifier, the goal is to minimize the classification error of the

training data.
2 A convex region is one in which a line between any two points of the region will be contained entirely

within that region.
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Figure 4: Types of decision regions that can be formed in the input data

space by two, three, and four layer neural networks with hard

limiting activation functions and one output node. Regions for

networks with sigmoid activation functions and multiple

outputs will be more smoothed but have similar properties.

(After Lippmann, 1987)
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because the continuous, non-linear activation function results in decision

regions that are usually bounded by smooth curves.

Another way to view the operation of the neural network is as a non-

linear transformation of the feature space into a new space in which the data

is linearly separable (Pao, 1989). The nodes of the final layer, in this case,

perform a simple hyperplane resolution on the output space of the previous

layer. The complexity of the separation determines the number of layers -

needed.

2. APPLICATIONS OF NEURAL NETWORKS TO

MULTISPECTRAL IMAGES

The ability of the neural network to produce a classification with

arbitrarily shaped decision regions without any prior knowledge of the

statistical distribution of that data makes it a promising candidate for the

classification of remotely sensed multispectral imagery. Many researchers

have addressed various aspects of this technique. This comprehensive

analysis and literature survey is organized into several topical sections:

• Input data preprocessing, structure and encoding

• Output encoding and extraction of classes

• Network architecture

• Training algorithms

• Comparisons to conventional classifiers

2.1 Network input

Preprocessing

The first step in using neural networks for the classification of

multispectral imagery is to determine the type and form of input data to be

fed into the network. The image data that has been most commonly used is

Landsat Thematic Mapper (Bischofet al., 1992; Heermann and Khazenie,

1992; Kiang, 1992; Civco, 1991; Cromp, 1991; Liu and Xiao, 1991; Mulder and

Spreeuwers, 1991; Hepner et al., 1990; Ritter and Hepner, 1990; McClellan et

al., 1989), but some studies have involved SPOT (Dreyer, 1993; Wilkinson et
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al., 1992; Kanellopoulos et al., 1991), Landsat MSS (Cromp, 1991;

Benediktsson et al., 1990a), simulated HIRIS (Benediktsson et al., 1990b),

merged AVHRR and SMMR (Key et al., 1990; Key et al., 1989), and digitized

aerial photography (Medina and Vtisquez, 1991).

As with any classification routine, preprocessing, or feature extraction,

can be carried out on the image data to condense the data and help the neural

network differentiate the classes. Principal components analysis is often

used to reduce dimensionality in classification problems (e.g., Schowengerdt,

1983). Beyond the initial phase of data reduction, however, additional non-

linear processing of the data before presenting it to the network can result in

linearly separable classes that dramatically decrease training time over the

non-linearly separable case (Pao, 1989). Three of the papers in this survey

included discussion of preprocessing. Dreyer (1993) calculated a number of

textural features based on gray-level statistics for image segments used in

training. He found the use of these features increased the accuracy of a

"field" class, had no effect for "urban" and "water" classes and actually

decreased the accuracy of a "forest" class. Key et al. (1990) also used texture

calculations such as second moment and entropy to produce a single texture

measure for each pixel in the classification of land cover and cloud types in

the Arctic. Classification results in this case were superior to those that used

spectral pixel values only. Civco (1991), in a standard land cover

classification, presented the network with a single mean vector for each class

of the training data. This resulted in a drastic reduction of the training set

size but forced a statistical measure into the training process. He points out

that this is not the optimal way to implement a neural network classifier, as

a measure of randomness needs to be presented to the network during

training to account for the variability of the data during classification.

Another potential use ofpreprocessing routines might be for the

smoothing of noise in the image data. The use of a 3x3 spatial mean and root

mean square difference relative to the center pixel as input, for example, both

introduces texture and masks dropped or bad pixels in the training data that,

since they are not representative of the desired class, might cause training

time to increase. In general, though, given the original image data and

enough training time, the neural network can perform any necessary feature

extraction transparently through the adjustment of its weights during

backpropagation. Although a speed advantage can be gained from external
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preprocessing of the data, the network will be more generally applicable if it

is presented with just the raw data. For instance, presenting the network

with the entire window of pixels used to calculate texture instead of the

single preprocessed texture value will give the network more flexibility. The

network can use the additional pixel values as necessary to help separate the

classes.

Structure

The simplest structure for data input (also used in most statistical

classifiers) is that for reading one multispectral pixel into the network. One

input node or a set of input nodes is used to represent the data for each

spectral band (Figure 5). This is the favored input technique (e.g., Dreyer,

1993; Bischofet al., 1992; Kiang, 1992; Li and Si, 1992; Wilkinson et al.,

1992; Cromp, 1991; Kanellopoulos et al., 1991; Liu and Xiao, 1991; Medina

and V_isquez, 1991; Short, 1991; Benediktsson et al., 1990a; Benediktsson et

al., 1990b; Key et al., 1990; Key et al., 1989; McClellan et al., 1989). A

natural extension is to use a 3x3 window of pixel data from each band of the

image as the input (Figure 6). This has the advantage of introducing texture

information into the training procedure (Hepner et al., 1990; Ritter and

Hepner, 1990), but results in greatly increased training time per cycle

because of the nine-fold increase in input pixels. A compromise is to use a

3x3 window in one band and only the center pixel of the window in the rest of

the bands (Bischof et al., 1992).

Another feature of neural networks is that additional sources of data can be

added to the classification procedure by simply adding input nodes. This can

be done with statistical classifiers by adding another '])and" to the image

data. The advantage of the neural network method is that one does not need

to consider the distribution of the ancillary data, which will often be different

from that of the multispectral data. The addition of a preprocessed version of

the multispectral data such as the texture calculation used by Dreyer (1993)

and Key et al. (1990) is one example of adding inputs to the network beyond

those for the multispectral image itself. But other, unrelated, data sources

can be used as well. Benediktsson et al. (1990a) added inputs for elevation,

slope, and aspect data. The temptation to add input nodes blindly into the
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Network structure for classification using

single pixel values and ancillary data

f Input LayerQ

_MultispecWal
data

m

Hidden Layer

Note: Many interconnections
left out for clarity

Output Layer

Class

m+l

Ancillary Data -_'"_ _

(elevation, temperature,

other sensor data, etc.) _ •

Figure 5: This simple three layer backpropagation neural network structure is one of the
most commonly seen in the literature. The value of a pixel in each of m bands
of the multispectral image is presented to the input layer along with data for
that pixel from k other sources (if desired). These inputs are fanned out to the
first processing layer, the hidden layer. The number of nodes in the hidden
layer is arbitrary and is usually chosen by experimentation. The outputs of

the hidden layer are in turn fanned out to the final processing layer, the
output layer. In this case each output is used to represent one ofo possible
ground cover classes. When the network is used in feed forward mode for
classification, the output Values are Usually c0ntinu0us and class membership
can be determined by a threshold or by choosing the highest output value. The

output values can also be viewed as fuzzy membership values for each class. A
measure of class mixing and the uncertainty of classification can be extracted
from this set of values.



17

Network structure for classification using 3x3

windows of pixel values and ancillary data
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Figure 6: When using a window of multispectral data the number ofinterconnections and
required nodes is greatly increased. In this case a 3x3 window is used in m
bands of image data. In addition, k ancillary data parameters are fed in for each
window. As in Figure 5, each output is used to represent o ground cover classes.
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network should be avoided, however, as this can cause a substantial increase

in training time with little gain in classification accuracy.

Encoding

Since, in the standard backpropagation neural network model, the -

inputs are connected to all hidden layer nodes, the order of the input data is

not important. Beyond maintaining consistency of input data from one

training sample to the next, the placement of the various nodes (i.e., starting

with band 1 first or reading a 3x3 window from left to right and top to

bottom, etc.) is irrelevant. However, the format of the number presented to

the network is crucial. Most neural network algorithms are designed to deal

with data ranging from 0 to 1. Although this is not a mathematical

requirement, it avoids the use of a scale or shift factor every time the sigmoid

activation function (Figure 3) is evaluated, thus achieving minimal floating

point computations. Thus, a simple way to prepare the data for the network

is to scale the value of each band of a pixel to this range, and present each

scaled value to a separate input node. This encoding technique has been

implemented in most of the papers surveyed.

Another encoding possibility is binary representation of the pixel value

(Heermann and Khazenie, 1992; Benediktsson et aI., 1990b). Thus, in the -

case of 8-bit band values, 8 inputs are required. This would seem to be a poor

choice because it would take 32 inputs to represent a 4 band pixel using this

method and only 4 inputs using the simple scaling procedure. The

justification for binary representation is that the network cannot sense the

small differences in similar pixel values when they are scaled to such a small

range (Bischofet al., 1992). The arguments against this method, in addition

to increased training time per cycle, are the fact that the bit patterns change

dramatically at times with small changes in pixel value (e.g., from 127 to 128)

and the fact that lower bits in the pixel are often noisy. Adjacent data values

are assumed to be likely to belong to the same information class and

therefore should have similar codes (Benediktsson et al., 1990a).

Alternatives to using a standard binary representation are to use gray coding

(Benediktsson et al., 1990a) or coarse coding (Bischofet al., 1992). Gray

coding is a modified binary encoding technique that produces numbers

guaranteed to change by only one bit from one number to the next. Coarse
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coding can be viewed as a form of interpolation. An arbitrary number of

input nodes is used to represent the desired input data range. These nodes

are distributed uniformly in this interval. A Gaussian response function is

then used to smear the input data number over this range of values to

produce floating point values for each of the input nodes. According to

Bischofet al. (1992), the advantage of coarse coding over gray coding is that

in general, continuous codings are preferable to discrete codings.

2.2 Network output

Encoding

Once the input layer structure and data format have been determined

a similar process must be undertaken with the output layer. The most --

straightforward way of encoding the output classes is to use one output node

per ground cover class. Generally, the desired output values during the

neural network training phase consist of low values (e.g., 0.1) for outputs that

do not correspond to the pixel's assigned class and a high value (e.g., 0.9) for

the output that does correspond to the pixel's assigned class. This method

was used by almost all of the papers surveyed.

Benediktsson et al. (1990a) discuss two additional output encoding

methods. The first is binary encoding. In this method only log2M output

nodes are required to represent M classes, resulting in a decrease in training

time per cycle over the one output per class case. However, as the authors

note, the use of more than log2M output nodes can lead to fewer training

cycles to achieve the same error, since the Hamming distance 3 of the output

representations for the classes can be larger. Their second method is called

temperature coding. As in the one output per class method, the number of

outputs is equal to the number of classes, but the code for class n consists of a

1 value for the first n outputs and a -1 value for the remaining outputs. This

results in a larger Hamming distance for the output representations of the

classes than in the cases of both binary and one output per class encoding.

Heermann and Khazenie (1992) attempted some classifications with binary

class encoding for a reason other than decreased time per training cycle.

Their motivation for this was to force the network to classify all the pixels

3 The Hamming distance is the number of instances in which the corresponding entries of two binary
vectors do not agree.
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and disallow unknown pixel results. The mapping in this case was inferior to

that of the one output per class technique. Civco (1991) took output node

reduction even further than binary encoding by using a single output node.

Presumably, the continuous range of the output value of that single node was

partitioned into regions corresponding to the various classes. Use of a single

output node would lead to an even more dramatic decrease in training time

per cycle than that of binary encoding. However, the problems with binary -

encoding mentioned by Benediktsson et al. (1990a) are more acute in this

case. The processing ability of one output node is limited. A single output

node would require finely tuned weights to correctly partition the data space

into the final classes all by itself. Convergence might even be impossible,

making an increase in the number of hidden layer nodes necessary.

Extraction of classes

The next issue concerning the output data representation is how to

interpret the continuous range of the output values achieved during the

classification phase. Although the outputs are generally trained to be

discrete values, there are two reasons why a continuous range from the low

value to the high value will be seen during classification. First, the network

is rarely trained to zero error on the training data. Thus, the outputs, even

for the training data, will not exactly match the desired discrete values.

More importantly, it is presumed that the data fed in for classification will b-e

more diverse than the training data. Regions that do not fit easily into any

training category win produce different sets of output values than those

expected for the given classes.

For the rest of this section we will assume that the outputs were

designed to represent one class apiece and were trained to have "high" values

for their given class. The simplest way to assign a class to the input data is

to choose the class of the output node with the highest value (e.g., Cromp,

1991; Mulder and Spreeuwers, 1991; Benediktsson et al., 1990b). Key et al.

(1990; 1989) modified this scheme with a threshold. The pixel was termed

unclassified if all of the outputs (which ranged from 0 to 1) were less than 0.4;

otherwise it was given the class of the highest valued output node. Another

possibility is to consider the magnitude of all of the output values as a metric

of some sort in determining a final class assignment.
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There are two ways to interpret the set of continuous output values for

the refinement of the classification. The first is to interpret them as

classification confidence data. Higher values for an output would imply a

higher confidence that the pixel belongs to the corresponding class. Short

(1991) designed a system using neural networks as the first step in a real-

time classification system for use with Earth Observing System (EOS) data.

A neural network appropriate for the sensor type and climate being analyzed

would do an initial classification and the outputs would be sent to an expert

system for final classification. According to Short, the output of the neural

network describes the confidence and ranking of class membership. Kiang

(1992) discusses a method with which to convert the output values to a

posteriori probabilities that can then be used improve the classification

accuracy. Bischofet al. (1992) used a second neural network to smooth the

original classification data. The input to this auxiliary network is a square

window of the standard threshold classified image. For each pixel of the

window, the classification result along with confidence information generated

during classification are input to the net. The desired output classes are the

same as for the original classification. With this method, the degree of

smoothing depends on the confidence of the classification at each pixel.

The second way to view the continuous range of output values is as a

measure of class mixing. McClellan et al. (1989) in a simple land and water

classification used a 3 output network to represent the 2 classes. The

continuous output data was scaled and viewed as an RGB image. The third

output had been trained to 0.1 for all training data and was only included for

the p_oses of the RGB display: T_ey discovered that in shoreline regions

the first two outputs were nearly equal and in between the high and low

training values. This was interpreted as the neural network clustering these

areas into a separate mixed class. The nonlinearity of the network caused a

clustering of this data around one point instead of stretching the outputs all

along the range of the high and low training values. _I

The meaning of the continuous valued outputs cannot be determined

for sure without Compa_sons With extensive ground truth data. However,

there is an inherent fuzzy logic property to the neural network. Without any

additional processing, a neural network with a one output node per class

encoding can provide additional information beyond that of a "hard"

classifier. Key et al. (1989) claim such a neural network classifier has both
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the confidence measurement and mixed class detection abilities. Using this

interpretation, each output can be thought of as a membership value to a

particular class. When a sigmoid activation function, which is linear through

much of its output range, is used, these membership values are linear. Thus,

a pixel can have a very high value in one node and low values in the others

denoting a strong likelihood of belonging to that one class. If it has two high

outputs then a mix of two classes is indicated. If one output is only slightly

higher than the rest, then one class with a low confidence measure is noted.

And if all outputs are low the network cannot fit the pixel to any of the --

trained classes or the pixel is a mixture of all classes.

Heermann and Khazenie (1992) exhibit the class mixing concept in a

table showing the neural network classifier results. Along with the

classification percentages for each of their five trained classes, they show the

percentages for some two class mixes that were obtained. With real image

data, class mixing is a common occurrence. Thus, the ability of neural

networks to detect class combinations enriches the classification and brings it

beyond the set of classes with which the network is trained. This ability

should be especially apparent when texture information, such as a window of

pixels is incorporated into the network training. Parametric classifiers can

be used to detect mixed classes fairly easily when used on pixel data. A

mixed pixel can be simply one with a value in between the means of two

classes, for instance. But when texture or ancillary data is used these

measures become more complex because the distributions will often differ

greatly from that of the multispectral data. The neural network, on the other

hand, will provide fuzzy output values for any type of input data.

2.3 Network Architecture

While the structure of the first and last layers of the neural network

are controlled by external factors, the number of hidden layers and their size

must be determined experimentally. Table 1 shows the data encoding

techniques and network structures used by some of the researchers who

discussed the topic of network architecture. The degree to which the

theoretical capabilities of the structures shown in Figure 4 can be utilized

depends on the number of hidden layer nodes. In the case of a single hidden
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Table 1: Summary of some of the data coding techniques and network structures.

Authors:
Benediktsson

et al. (1990a)
Benediktsson

et al. (1990b)
Bischof et al.
(1992)

Imagery:
MSS, elevation,

slope r aspect data
60 bands of
Simulated HIRIS

Heerman,
Khazenie

(1992)
Hepner et al.

Kannellopoulos

et al. (1991)
Key et al.

(1990)
Li, Si (1992)

7 TM bands

Dreyer (1993) 3 SPOT bands,
texture calculations

3 TM bands

Wilkinson et al.
(1992)

4 TM bands

2 date SPOT

Merged AVHRR
and SMMR

10 band airborne

spectrometer

2 dates of 3 SPOT
bands

Input Data Coding:
Gray coding

Binary coding, 12 bits

per band
Coarse coding, requiring
13 inputs per band.
Also with 5x5, 7x7
window in band 5

Output Data Coding:
Temperature and binary

coding
3 outputs, one per class

4 outputs, one per class

Network Structure:
56-32-10 and 56-32-4

240-15-3,480-15-3, and
720-20-3

91-5-4, 116-8-4, and
140-8-4

Individual pixel values 9 outputs, one per class 3-13-12-9, 6-8-8-9, and
42-7-7-9

Binary data, 8 bits per 5 outputs, one per class 24-24-5
band

3x3 window of pixel 4 outputs, one per class 36-10-4
values in each band

Individual pixel values 20 outputs, one per class 6-18-54-20

Individual pixel values 12 outputs, one per class 7-10-12

Individual pixel values. 3 outputs for 5 classes, 10-7-3

Input patterns are coding unspecified
normalized In'st

Individual pixel values 7 outputs, one per class 3-15-7 and 6-21-7
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layer, for instance, the output node that determines a given class serves as an

AND operator on the half-plane decision boundaries produced by the hidden

layer (Lippman, 1987). The actual decision regions will be convex polygons or

unbounded convex regions with a number of sides equal to or less than the

number of hidden layer nodes. Thus, the more hidden layer nodes that are

used, the more flexibility the network has to carve up the input data into an

appropriate decision space. If the network is allowed too much flexibility it

can overtrain. In this case the final decision region is too specific to the

training data and not applicable to the rest of the image. The optimal

number of hidden layer nodes depends on the problem at hand, and it is

necessary to determine this number by experimentation. If the training error

does not decrease to an acceptable level, then the number of nodes should be

increased. If the error becomes very small but the resulting classification is

poor, then perhaps there are too many hidden layer nodes. Unfortunately,

there are no specific theoretical guidelines for the size of the hidden layers.

Three layer networks

Generally for classification of multispectral imagery a three layer

(single hidden layer) fully interconnected network is sufficient and is the

most common implementation seen in the literature. A four layer net is often

unnecessary since the class distributions do not usually consist of

disconnected or other non-convex regions. In many of the surveyed papers a

trial and error method has been used to determine the number of hidden

layer nodes that result in the best classification. The result turned out to be

that, in general, the number of hidden layer nodes used has been proportional

to the number of output nodes (i.e., number of classes) and relatively

independent of the number and format of the inputs. This makes sense since

the output layer determines Ciassby comb{ning the hyperplane decision

boundaries of the hidden layer. Thus a more complex classification using a

larger number of classes will require more decision Boundaries for the output

nodes to choose from.

A few of the researcherslisted in Table 1 indicated that they chose the

number of hidden layer nodes by experimentation. Benediktsson et al.

(1990b), with 20 bands represented as binary inputs Used a structure that

consisted of 240 inputs, 15 hidden layer nodes, and 3 output nodes. In the
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other paper by Benediktsson et al. (1990a), they determined that their 56

input, 10 output network required 32 hidden layer nodes. Bischofet al.

(1992), using 13 input nodes per band (91 total inputs) and 4 output nodes,

determined 5 hidden layer nodes to be optimal after trial runs with from 2 to

15 nodes. The classification performance did not change much with the

hidden layer nodes ranging from 3 to 15. They attribute this to the large

number of training samples used -- the performance did not decrease with

more nodes, as they expected it to, because there were sufficient training

samples to train the excess weights in the larger hidden layer configurations.

Hepner et al. (1990), with a 3x3 window of pixel data, found that i0 hidden

layer nodes were optimal for their 36 input, 4 output network. Fewer hidden

layer nodes resulted in ins_cient partitioning of the input space. More

hidden layer nodes resulted in the training becoming stuck in local minima

and thus not converging to a global minimum error.

Figure 7 shows plots of the number of hidden layer nodes as a function

of the number of input layer nodes, input features, and classes for the three

layer neural networks used in the papers in Table 1. The input data has an

effect on the optimal number of hidden layer nodes in that the inherent

separability of the data will help determine how many hyperplanes are

required to separate the classes at the output layer. However, this

separability is to a certain degree independent of the data representation and

thus the number of inputs to the network. The classes of a three band image,

for instance, will have the same inherent separability whether each band is

represented in the network by a single scaled input or by a flail 8-bit binary

representation. As expected, the first plot of Figure 7 shows a definite lack of

correlation between the number of input nodes and the number of hidden

layer nodes.

To account for the differences in input structure and encoding techniques, the

number of hidden layernodes is also plotted in Figure 7 as a function of the

number of features, defined as the number of multispectral bands and

ancillary data sources used in the classification. Thus, the effects of using

windows of input data and binary encoding techniques, for instance, are

ignored, so that we can examine the relationship between the number of

hidden nodes and the dimensionality of the input data. While the

distribution of the second plot is less scattered than the first, it by no means

indicates a correlation between number of hidden layer nodes and number of
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Figure 7: Hidden layer node size vs. number of input nodes, input

features, and classes for the three layer neural networks

used in the papers in Table 1. There is no correlation in this

data between input nodes or features and hidden layer size.

The plots of hidden layer nodes as a function of number of

classes are shown with a linear fit. The lower right plot,

showing a high degree of correlation between the hidden

layer size and number of classes, is the result of deleting one

atypical point from the data.
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input features. The third plot, however, which shows the number of hidden

layer nodes plotted as a function of the number of classes, shows a small

degree of correlation between these two quantities. The correlation

coefficient of a linear fit is 0.39, which can be increased to a respectable 0.75

if one stray point is removed. This point is from a cloud and surface

classification using AVHRR and SMMR from polar regions (Key et al., 1989)

and can be considered atypical. The slope of the resulting linear fit is

between 2 and 3, indicating that the number of hidden layer nodes used was

2 to 3 times more than the number of classes.

While this result is based on a small sampling, it is has some

important consequences. It demonstrates that such analysis is possible to

help develop a metric for one of the network's unknown quantities, the

hidden layer size. It should be noted that not all of the network structures

represented in the plot were optimized with respect to the number of hidden

layer nodes. If this had been done, the correlation might be even stronger.

Also, the data sources and classification complexities varied a great deal, so

this small set was a decent representation of the range of problems

encountered. Although the result does not precisely define the number of

hidden layer nodes based on the number of classes, it does give a starting

point for the hidden layer size with which to begin network experimentation.

This is important because it helps to make an oi_en confusing aspect of the

neural network procedure more transparent.

Alternative numbers of layers

Some researchers have also looked into the use of two and four layer

networks. Benediktsson et al. (1990b) used a two layer network (which they

called a conjugate-gradient linear classifier) in the classification of high

dimensional data. They found that the linear classifier obtained

classification results that were similar to that of the standard three layer

network. In their other paper (1990a) they comment that the use of a four

layer network did not improve classification accuracy over the three layer

case. Civco (1991) also obtained similar performance with the three layer (6-

15-1) and four layer (6-6-15-1) network topologies. KaneUopoulos et al. (1991)

used a four layer network with a 6-18-54-20 configuration. As a starting

point for determining the number of hidden layer nodes they assumed that,
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for an N-dimensional feature space, the first hidden layer requires at least

2N nodes to define hyper-regions that form the basis of a classification (also

Pao, 1989). Choosing the number of nodes in the second hidden layer is more

complex. Their assumption was that the second hidden layer requires more

nodes as the diversity of regions belonging to one class increases. In their _

initial experimentation, the addition of nodes in each hidden layer improved

classification performance steadily until a point of minimal gain was

encountered. Unfortunately they did not present the results of a three layer

network for comparison. The classification discussed in this paper was one of

the more complex (20 classes) of all the papers reviewed, and for this reason

the arbitrary decision region capabilities of the four layer net may have been

required to achieve the most accurate classification.

Dreyer (1993) tried both three and four layer networks and determined

that the three layer net could not obtain as high a classification accuracy as

the four layer one. An interesting aspect of Dreyer's work is the

implementation of a hidden layer node reduction technique. He states that

the hidden layer size may be optimized given a tradeoff between the ability of

the network to generalize and the ability to train to minimal error. His

solution was to simplify the network by removing insignificant hidden layer

nodes based on a relevance measure after training, and then re-training the-

smaller configuration. The weights remaining after node deletion, which

represent some degree of learning, are used at the start of the new training

stage. This gives the weights a head start and speeds up the subsequent

training phase. This method can be extended from the removal of hidden

layer nodes to the removal of input features. If a node of the input layer has

little significance, then its corresponding input feature can be let_ out of the

analysis. Using his optimization technique, Dreyer reduced the number of

hidden layer nodes by about half. A small improvement was noticed in the

classification accuracy of the net after optimization. Even without this

increase, however, the optimization boosted efficiency since the number of

node interconnections was reduced by a factor of four, resulting in a similar

reduction in computing time.
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Alternative network architectures

A few researchers have addressed the use of alternative network

structures rather than the standard fully interconnected two, three, and four

layer nets. One modification is the use of hierarchical connections of smaller

neural networks. Benediktsson et al. (1990b) implemented a parallel, self-

organizing, hierarchical neural network (PSHNN). This structure consists of

a series of independent self-organizing stages. At the output of a stage there

is an error detection scheme, if an input vector is rejected according to this

scheme, it is passed through a non-linear transformation and sent to the next

stage. Each stage works with a transformed version of the input vector, and

not with the output of the previous stage. Thus, during classification all the

stages can be run in parallel since the stages do not depend on outputs from

the previous stages. It is termed self-organizing because the number of _I

stages is determined during training -- more complex problems requiring

more stages. This structure was found to be both faster and more accurate

than the conventional three layer backpropagation network.

Kanellopoulos et al. (1991) used a two level hierarchical network as

one approach to their 20 class problem. Their justification for using a

hierarchical net was the fact that remotely sensed data is often classified into

hierarchical land cover schemes. The architecture was determined by

calculating the separability of the classes using a metric called the Swain-Fu

distance. Two nets in the second level were designed to take outputs from a

single net in the first level (Figure 8). Additionally, some classes were

determined directly out of the first lower level network. Very little

classification improvement resulted, but the training time was halved over

the four layer standard net implementation due to the simpler network

structures used.

Liu and Xiao (1991) proposed an alternative neural network algorithm

called blocked backpropagation to address the problems of slow error

convergence and local minima, which they claim are commonly encountered

when using standard backpropagation for remotely sensed image data sets.

The hidden layer of this network is organized into blocks of units. The nodes

in each block are linked to a single output cell (Figure 8). Thus, the hidden

layer is not fully connected to the output layer. Liu and Xiao used four

inputs, a hidden layer consisting of four blocks each of seven nodes, and four

output nodes. They compared the results with those of a standard three layer
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Figure 8: Alternative neural network structures. The hierarchical neural network

used by Kanellopoulos et al. (1991) and the blocked backpropagation
scheme of Liu and Xiao (1991).
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backpropagation network with a 4-7-4 topology. The blocked

backpropagation network was found to have faster and smoother

convergence, and a higher classification accuracy than the standard net. It

should be noted, however, that the standard net was only given seven hidden

layer nodes for all four output nodes while the blocked back-propagation net

was given a total of 28 hidden layer nodes, or seven for each output. Perhaps

it would be fairer to compare the blocked backpropagation algorithm to a

standard net with 28 hidden layer nodes, all fully interconnected to the

output.

2.4 Training algorithms

Once the input data, class representation, and overall network

topology have been determined, the following must be selected: training data,

the network parameters such as learning rate and momentum, and the -

criterion for training termination. The first of these, training data selection,

is a problem common to all supervised training algorithms. The data must be

representative of the desired class with which it is tagged. In addition, these

classes must have some separability in the input feature space for the

classifier to be able to discern them. In the surveyed papers, the size of the

training sets varied considerably. Civco (1991) used one training sample, the

mean vector, per class. This approach was extreme compared to the rest.

Hepner et al. (1990) used what they termed a "minimal training set"

consisting of a 10xl0 training site for each class. A few others used similar

training set sizes (e.g., Liu and Xiao, 1991; Benediktsson et al., 1990b). The

largest training set used consisted of 22,000 patterns (Heermann and

Khazenie, 1992). However, it was found that the accuracy of classification

was not much different for this large set than for a much smaller set of 4200

patterns. According to the authors, the preparation of the training data is

probably more important for accurate classification than the size of the -

training data.

Heermann and Khazenie (1992) devoted a section of their paper to the

preparation of their training set. They refer t0_a "picking and packing"

technique. The "picking" is accomplished by first employing an unsupervised

clustering algorithm. Then small homogeneous regions are hand selected to
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represent the ground cover classes. The training data is then cleaned up

("packed") by removing any pixel values that are duplicated either within

that class or within other classes. Eliminating duplicate pixels within a class

avoids redundant calculations, and eliminating duplicate training values

between classes ensures that the network will not be given contradictory

training information. This method was probably chosen in this case because

of the ambiguity of actual class membership for the training data. However,

if the class values for the training data are well known (e.g., through

extensive ground truth data), it may not be advisable to eliminate duplicate-

samples in different classes, because this might reduce the ability of the

network to detect mixed classes. In addition, the elimination of duplicates

within a class will cause those particular patterns to have less weight in the

training of that class. If the data truly contains pixel values of a limited

range then it might be good to leave the duplicates in the training data and

thus allow the network to favor those common inputs more heavily. The best

approach is probably determined entirely by the type of data and classes.

The problem is essentially one of how representative the training data is of

the actual desired classes.

For the backpropagation algorithm, learning rate and possibly

momentum terms must be specified. As with the hidden layer size, there is

currently no way of selecting these parameters except experimentation. A

true gradient descent is obtained only if infinitesimal steps are taken

(Rumelhart et al., 1986). The most rapid learning occurs for the largest

learning rate that does not lead to oscillation. The use of a momentum term

allows the learning rate to be higher. Rumelhart et al. (1986), in some

general backpropagation experiments, found that similar solutions can be

obtained either with a zero momentum and small learning rate or with a

higher momentum and higher learning rate. The second option will lead to

faster training.

Kanellopoulos et al. (1991), however, found that the best results were

obtained when the momentum term was eliminated and the learning rate

was normalized to be proportional to the number of network weights.

Heermann and Khazenie (1992) employed a similar technique but did not

eliminate the momentum term. Their learning rate was set equal to

Co. ip. Si, where N is the total number of nodes in the network, P is the total
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number of training patterns, and C Ois a constant that they determined

experimentally to be 10. _

Heermann and Khazenie (1992) also explored the use of an adaptive

learning rate, as discussed previously, to increase classification speed and

avoid oscillation. Their algorithm involved increasing the learning rate if the

last training iteration resulted in a decrease in the summed error over all

training patterns. Conversely, the learning rate is decreased (but not allowed

to go to zero) and the momentum term disabled if the error increases. Once

the error begins to decrease again the momentum term is reinstated. This

technique resulted in a 5 to 10 times speedup of the training process

compared to the standard fixed learning rate procedure, with no loss in

classification accuracy. The other potential benefit of an adaptive learning

rate is in removing the responsibility of learning rate selection from the user

and making it part of the transparent operation of the network.

A few papers discussed the final error to which the network was

trained. Benediktsson et al. (1990a) used the value of the overall change in

weights from one iteration to the next as a metric to terminate the training

process. A more common method is to use a threshold on the total error

between actual and desired outputs for all training patterns as a criterion.

Bischofet al. (1992) minimized the "sum squared error" in 50 training cycles.

98.2% of the training data was correctly classified at this stage. Civco (1991)

obtained a root mean square error of 0.18 (on a scale of 0 to 1) after 250,000

iterations of the class mean vectors. In the studies ofHepner et al. (1990),

the amount of error between the network output and the desired output was

reduced to 15% before training was terminated. This level was considered

appropriate for an accurate classification. Kanellopoulos et al. (1991) found

that it required 600 training cycles of half of the training data for 81%

classification accuracy on the other half. An important issue to keep in mind

when pursuing the minimization of error is the problem of generalization

versus specialization. In many neural network problems the minimization of

training error is inherently beneficial. However, when the application is a

large scale classification of multispectral imagery it is prudent to consider the

concept of overtraining. This can be a problem especially with four layer

networks. Since these are capable of arbitrary decision regions, they might

have a tendency to specialize too much on the training data and have little

applicability to the rest of the image during classification.
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Another disadvantage of the backpropagation algorithm, besides the

requirement of specifying parameters such as the learning rate, is the

lengthy time necessary for training. When used as a feed-forward classifier,

a neural network is very fast (Heermann and Khazenie, 1992). However, the

iterative process required to produce that feed-forward classifier is quite time

and computation intensive. Although different network structures, training

set sizes, and final error criteria were used in each case, the training times

required in the surveyed papers illustrate the range and magnitude of the

time involved. Some of the times required for reaching the error criterion

using the standard backpropagation algorithm were 23 minutes on an IBM

PC/AT (Key et al., 1989), 3.1 CPU hours on a Vax 8600 (Hepner et al., 1990);

4 hours on a Sparcstation 2 (Wilkinson et al., 1992), 10 hours on a SUN

workstation (Mulder and Spreeuwers, 1991), and 3 weeks on an HP 9000-385

(Heermann and Khazenie, 1992). The last case was improved to 3 days with

the adaptive learning rate method discussed previously. An important

observation by Heermann and Khazenie (1992) is that the network training

does not proceed linearly. Most of the error convergence occurs during the

very beginning part of training. The rate of improvement falls off

dramatically as learning progresses. Thus, the convergence criterion is an

important factor in determining training time. It may be that a slight loss in

training data accuracy, and thus a great gain in training speed, does not

affect the overall classification significantly.

Another problem in the training of a neural network arises from the

initial assignment of random weights. Since this assignment is completely

independent of the data, training time can be long and multiple training

sessions can have different results -- i.e., the number of training cycles -

required to achieve the same error can vary considerably due to different

initial weight configurations. Li and Si (1992) have addressed these problems

with their technique of initializing the weights by a self-organizing method

prior to backpropagation training. They used Kohonen's self-organizing

algorithm (see Pao, 1989), which performs an unsupervised clustering

procedure, to set the starting weights between the input layer and the hidden

layer. Once the two dimensional grid of nodes in the Kohonen network have

stabilized, the weights are scaled using a sigmoid function and used as the

first set of weights in the standard three layer backpropagation neural

network. The second set of weights (between the hidden and output layers) is
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randomized as before. This method resulted in a dramatic increase in

training speed. To obtain a similar error rate the standard procedure of

completely random weights required over 1000 iterations while the self-

organizing method required only 26 iterations. This technique, in
~.

combination with an adaptive learning rate algorithm, could be an important

step towards removing the uncertainty and inconsistency of using neural

networks for the classification of multispectral imagery.

2.5 Comparisons to conventional classifiers

One of the best ways to prove the feasibility of the neural network

method for classifying remotely sensed multispectral imagery is to compare it

to conventional statistical classifiers. Some of the papers presented this

comparison quantitatively. The consensus is that the two methods are very

similar. A few researchers, however, found the standard methods to be better

than the neural network method (e.g., Civco, 1991; Mulder and Spreeuwers,

1991; Benediktsson et al., 1990b). Benediktsson et al., who found the

maximum-likelihood method to have an accuracy of 87.56% compared to

64.89% for the three layer backpropagation network, however state that their

use of simulated Gaussian distributed data gives the maximum-likelihood

method an unfair advantage. In this case the maximum-likelihood procedure

is optimal and the neural network can only approximate its performance.

Likewise, Civco, who used only the mean vectors of each class for training,

states that this method does not exploit the inherent variability of the image

data. The maximum-likelihood classifier was allowed use of this variability

in calculating class statistics, but the neural network was not provided the

same measure of randomness with which to create its internal class

representations accurately.

Most of the authors, however, found that the neural network technique

produced similar or superior classifications to those of the standard methods

(e.g., Bischofet al., 1992; Heermann and Khazenie, 1992; Kiang, 1992; Liu

and Xiao, 1991; Medina and V,'isquez, 199I; Short, 1991; Benediktsson et al.,

1990a; Hepner et al., 1990; Key et al., 1990; Ritter and Hepner, 1990; Key et

al., 1989). Bischofet al. (1992) found that the maximum-likelihood and three

layer backpropagation networks achieved similar results. When the network
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was supplied with a window of pixel data, however, its accuracy increased

another 4% relative to the ground truth. Hepner et al. (1990), who used a 3x3

window for network input, found in a qualitative comparison that the

network classifier resulted in more homogeneous regions, sharper transitions,

and more continuous features than the conventional classifier. Another

advantage found in their studies is that smaller training sets were required

for the neural network method (also Ritter and Hepner, 1990). This is

possibly due to the fact that with a small training set a statistical classifier

does not have enough data to describe the assumed distribution (Key et al.,

1990). Since the network assumes no particular distribution it does not

require as much training data. This is important because it could save a

significant amount of the labor involved in collecting ground truth for

training sites. _-

Another advantage discovered for the neural network method is its

greater generalization to both input data type and distribution. Statistical

classifiers are the better choice if the data distribution is known (Bischof et

al., 1992; Benediktsson et al., 1990a; Benediktsson et al., 1990b). However,

the neural network method has greater flexibility in that it can correctly

classify data that contains pixels that differ significantly from those in the

training regions (Key et al., 1990; Key et al., 1989). Additionally, the neural

network method can be adapted to include multi-source or ancillary data

simply by adding input lines. The network itself takes care of how much

weight each source should have in the classification (Benediktsson et al.,

1990a). For the statistical classifier case, however, different techniques must

be employed than those used on pure multispectral data. Also, with multi-

source data the distributions tend to be less regular and thus the non-

parametric neural network method might be a better choice (Benediktsson et

al., 1990a). Texture measures, such as windows of pixel data, are easier to -

implement with the neural network method as well. Some of the researchers

point to this advantage and to its potential for increasing classification

accuracy (e.g., Bischofet al., 1992; Civco, 1991; Medina and V_isquez, 1991;

Hepner et al., 1990; Key et al., 1990; McClellan et al., 1989). The greater

generalization capability of the neural network also leads to superior

signature extension to other images not used in the training. Key et al.

(1990) found that the network classified a much higher percentage of imagery

collected on a second date than the maximum-likelihood method did. The
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network is more robust because it does not depend entirely on the class mean

and covariance measurements which are likely to change from one date to

another. ......

A disadvantage of the neural network method is the loss of

interpretability due to departure from statistical theory (Kanellopoulos et al.,

1991; Key et al., 1990; Key et al., 1989). Since classes are no longer assumed

to have well-defined distributions the mechanisms behind a classification are

difficult to discern. Information about the decision regions and relative

importance of the features are distributed over all the weight values. There

are ways of viewing these weights, however. Bischofet al. (1992) used

"weight visualization curves" to help explain the internal representation of

the network and to aid in feature extraction. By examining the weights from

the input to each hidden layer node, and then that hidden node's contribution

to each output, they can relate some of the internal representations to the

physical characteristics of the image bands and classes. They also site an

example of feature reduction using Landsat Thematic Mapper data. The blue

and green channels have similar weights and are thus highly correlated. One

can be eliminated without reducing classification accuracy. Key et al. (1989)

used a similar method to determine which channels are important for

classifying certain classes and which channels are redundant. Image bands

that are weakly weighted contribute very little to the classification and can _.

be eliminated. Heavily weighted lines are traced from the input layer

through the hidden layer to the output layer to determine which bands affect

which classes. They state, however, that the relationships are not always

clear and must be interpreted with care.

Perhaps the biggest disadvantage of the neural network method, as

addressed earlier, is the length of training time. While this can be mitigated

with adaptive learning rate techniques, it is probably the major reason why

statistical methods will continue to be favored in the near future. However,

there are two reasons why this might change -- increasing volume of image

data in classification problems and recent advances in massively parallel

computers. According to Key et aI. (1989), as larger images are classified

while the amount of training data remains the same, training time becomes a

smaller proportion of overall classification time and the two methods will

achieve similar speed. Thus, with the advent of EOS, and the need for rapid

large scale ground cover classification, a neural network might become a _
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more feasible alternative. Short (1991), in fact, proposes the use of multiple

neural networks, trained for different sensors and climate types, to be used as

the front end to an expert system for the real-time classification of EOS data.

An important facet of the application of the neural network to large

image sets is that the compact nature of a neural network allows for easy

distribution of the classification data without requiring the transfer of an

entire image (Heermann and Khazenie, 1992). Once the network has been

trained, the weights can be sent to distributed computing sites to perform the

rapid, hard-wired network classification stage. To see if this is an advantage

over the maximum-likelihood method we produced equations for the number

of classification parameters that would have to be transferred in order to

perform a classification without the training data. For a three layer network

(which can perform classifications similar to maximum-likelihood), assuming

one input per band and one output per class encoding, the equation is

Classification parameters for Net = 3 + hidden layer nodes • (bands + classes). (8)

The first term is the number of parameters needed to specify the number of

nodes in each of the three layers; the second term is the number of weights

between the nodes. For the maximum-likelihood method, the equation,

derived from Swain (1978), is

Classification parameters for ML = 2 + classes • bands +

½ • classes • (bands 2 + bands).
(9)

One parameter is the number of bands; one parameter is the number of

classes; the second and third terms represent the number of parameters that

are necessary for the evaluation of the quadratic during classification (see

Swain, 1978). It can be seen from these equations that the number of

parameters for the maximum likelihood method is quadratic with respect to

the number of bands while the number of parameters for the neural network

method will depend on the choice of hidden layer size.

Figures 9 and 10 contain plots of the number of classification

parameters for the neural network and maximum-likelihood methods versus

the number of classes in one case, and number of bands in the other case.

Since little, if any, correlation was seen between the number of input and

hidden layer nodes in a three layer network (see Figure 7), the number of
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hidden nodes was kept constant as the number of bands was varied. The

empirical relationship between the number of hidden layer nodes and number

of classes discussed previously, however, is reflected in the plots. In each plot

the classification parameters are shown for networks containing 2 and 3

times as many hidden layer nodes as classes.

It can be seen from the plots of Figure 9 that, as the number of image

bands is kept constant, the maximum-likelihood method is linear with --

respect to the number of classes, while the neural network is quadratic.

Thus, as the number of classes is increased, the number of parameters

required to reproduce the classification becomes much lower for maximum-

likelihood than for the neural network methods. In the log plots of Figure 10

it can be seen that, as the number of classes is kept constant and the number

of image bands is increased, however, the relationship is reversed. For a 200

band classification (e.g., AVIRIS) the network representation is 2 orders of

magnitude smaller than that of maximum-likelihood. Since, in both methods,

the majority of the parameters are used as elements of matrix

multiplications, the number of calculations required, and thus the time for

classification, will be proportional to the number of parameters. Thus, in

terms of both size of representation and classification speed, the maximum-

likelihood method is better for classifying many classes (i.e., more than 5)

with small numbers of bands (i.e., less than 8). Based on the assumption of 2

to 3 times as many hidden nodes as classes and no correlation between the --

number of hidden nodes and number of bands, the neural network method is

better for all other cases.

The second possible impetus for the use of neural networks for ground

cover classification is the proliferation of massively parallel computers.

Dedicated neural network hardware would certainly result in a great speedup

of training time (Heermann and Khazenie, 1992). But also, the use of general

purpose parallel computers should help. Although the parallel

implementation of an inherently parallel structure is not necessary for the

successful use of neural networks for multispectral image classification, it

has been suggested as a future step in some of the reviewed papers (e.g.,

Heermann and Khazenie, 1992; Kanellopoulos et al., 1991; Short, 1991;

McClellan et al., 1989).

There is more than one way to parallelize neural network algorithms. The

most obvious is to place each node of the network at a node of the parallel
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Figure 9: The number of parameters required to perform 3 and 10
band classifications without the original training data for
both the neural network and maximum-likelihood methods

are plotted as a function of the number of classes. For the

network method it is assumed that one input node per band
and one output node per class are used. The network is also
assumed to have the empirically-derived relationship of 2 to
3 times as many hidden nodes as output nodes (Figure 7).
This results in the network plots being quadratic with
respect to the number of classes, while the maximum-
likelihood plots are linear.
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bands (also on a log scale). Since the number of hidden

layer nodes is assumed to be independent of the number of

inputs (Figure 7), the network response is linear. The
maximum-likelihood method response, however, is

quadratic with respect to the number of bands.
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computer. Another, perhaps easier, way is to implement the batch training

method in parallel. During training, each pattern is presented to the network

and the contributions of each training error are summed up. The total -

contribution is then used to adapt the weights before the next iteration.

Since the training pattern presentations are independent, this procedure can

be implemented in parallel.

3. SUMMARY AND CONCLUSIONS

The surveyed papers have established that the neural network

approach is feasible for the classification of remotely sensed multispectral

imagery. Similar performance to that of conventional classifiers, such as

maximum-likelihood, has been achieved. However, further work is necessary

before neural networks become a practicable alternative to conventional

classifiers. While the method is easy to implement in software and adapt to

different input data, and has shown a similar accuracy of classification as

conventional classifiers, the slow and sometimes inconsistent learning phase,

and the requirement of assigning obscure starting parameters such as

learning rate, hidden layer size, and training convergence criterion make the

approach less accessible to the casual user.

There are some current approaches for alleviating the problems of

training time. The use of initial weight values derived from an unsupervised

algorithm, such as the Kohonen self-organizing network, has been shown to

both decrease training time and make the training process more consistent

from one run to the next. An adaptive learning rate algorithm speeds up

training by keeping the convergence steps at the largest possible size without

causing oscillations. Implementations on parallel processing computers will

also be important in keeping training time under control.

The other key to making the neural network approach competitive

with conventional classifiers is to make the process more transparent to the

user. Unfortunately, discussion of network parameters and experiments to

develop metrics for these parameters have been sparse. The number of -

choices and parameters required to set up a training run can be

overwhelming. The need for an empirically-derived learning rate can be

eliminated by using an adaptive learning rate algorithm that adjusts as
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training progresses. Thus, the starting value of the rate is not as crucial to

successful training. An examination of the surveyed papers indicates that

there is some correlation between class number and another important

experimentally-derived parameter, the hidden layer size. Further study of

neural net classifications in which the hidden layer size is optimized with

respect to classification error might lead to a better characterization of this

relationship, which can then be used in subsequent classifications to

determine a starting point for the network structure.

Once the technique of using neural networks for the classification of

multispectral imagery has been developed into a useful tool, the challenge is

to make use of the unique abilities of the network. Many of these capabilities

have been investigated in a preliminary manner already. The ability of the

network to assimilate many different types of data without the need for

characterizing the distribution of each source can be exploited to expand the

applications of the classifier. In addition, more varied input data structures

are possible with the neural network than the single pixel and square window

implementations already discussed. The inherent fuzzy nature of the output

data has potential to provide class membership values and indicate class

mixing with little subsequent processing. Some promise has been shown for a

network's ability to generalize to other images with which it was not trained,

even if the classes in these images have different first and second-order

statistics. The ability of the four layer network to form disjointed decision

regions allows it to be applied to classes with highly irregular distributions.

While all of these things are possible with conventional classifiers, the

neural network approach provides them all in one algorithm. The general _

applicability of the neural network technique is both its strong point and its

weak point, however. All the variables involved in the using a network, from

the input structure and encoding, to the number of hidden layers and the

choice of error convergence, while providing the great potential of the neural

network, can easily intimidate someone interested in producing a ground

cover classification. Thus, in order for the neural network to claim a niche as

one of the tools of remote sensing it must be made into a faster, easier and

more consistent method. Considering the potential benefits, this would be

well worth the effort.
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